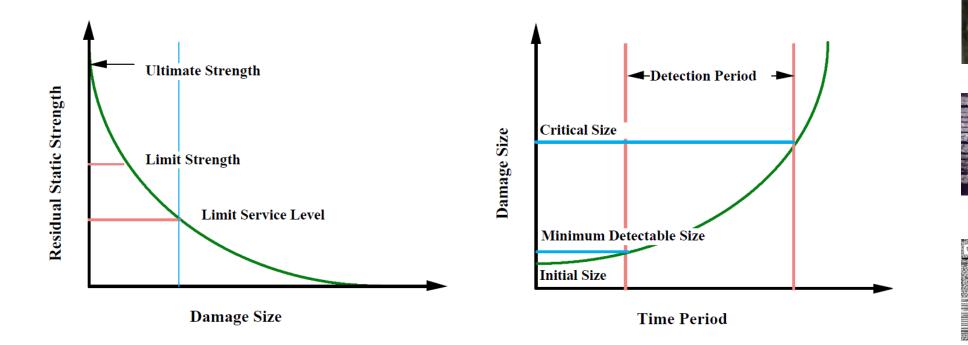
Advanced Composites in Engineering Structures

José Sena-Cruz & Anastasios P. Vassilopoulos

Lecture VII: Durability and long-term behavior of composites

Outline

□ Durability

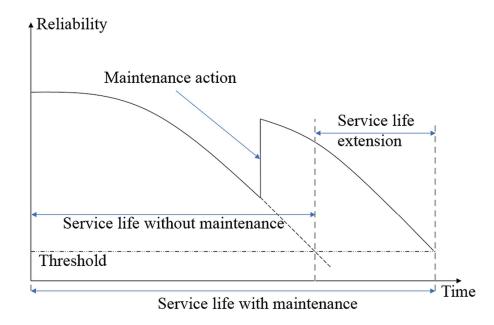

- Introductory aspects
- Environmental degradation factors
 - Thermal effects
 - Moisture
 - Chemicals
 - UV exposure
- How durability is addressed by the Codes

☐ Creep

- Phenomenon
- How creep is addressed by the Codes

What is Durability?

"Durability of a <u>material</u>, <u>component or structure</u> is defined as its <u>ABILITY TO RESIST</u> cracking, oxidation, chemical degradation, delamination, wear, and/or the effects of foreign object damage for a <u>SPECIFIED PERIOD OF TIME</u>, under the appropriate <u>LOAD</u> <u>CONDITIONS</u>, under specified <u>ENVIRONMENTAL CONDITIONS</u>."


Design working life (Eurocode "0")

"The structure shall be designed such that deterioration over its DESIGN WORKING LIFE does not impair the performance of the structure below that intended, having due regard to its environment and the anticipated level of maintenance."

Table 2.1 - Indicative design working life


Design working life category	Indicative design working life	Examples		
	(years)			
1	10	Temporary structures (1)		
2	10 to 25	Replaceable structural parts, e.g. gantry girders,		
		bearings		
3	15 to 30	Agricultural and similar structures		
4	50	Building structures and other common structures		
5	100	Monumental building structures, bridges, and other		
		civil engineering structures		

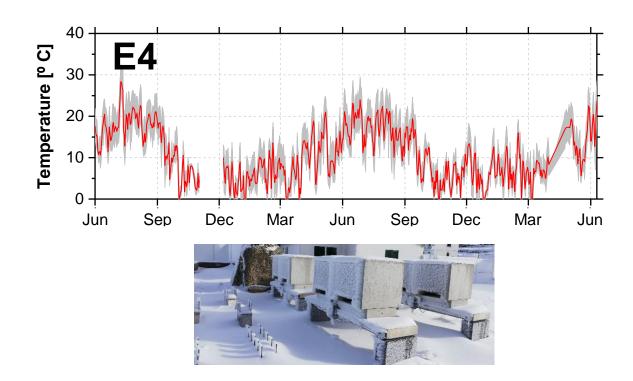
⁽¹⁾ Structures or parts of structures that can be dismantled with a view to being re-used should not be considered as temporary.

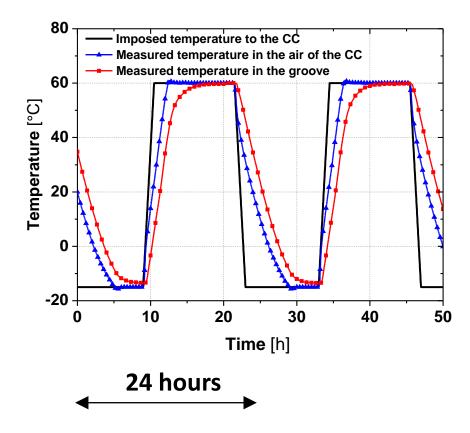
Durability - Complexity of phenomena

- □ Although FRP composites have been successfully used in the automotive, marine, wind energy, and aerospace sectors, there are critical differences where compared with Civil Engineering applications in terms of:
 - Loading conditions
 - Environmental conditions
 - Types of materials used
 - Processes
- ☐ A huge variety of different constituent materials are commercially available.

☐ Difficulties in testing: artificial accelerated versus real/natural aging.

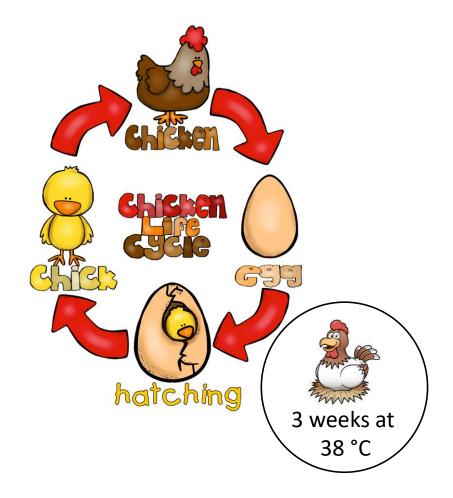
Accelerated aging vs. real ageing




Artificial accelerated aging

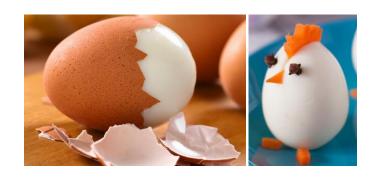
Accelerated aging vs. real ageing

Natural Aging


Artificial Aging

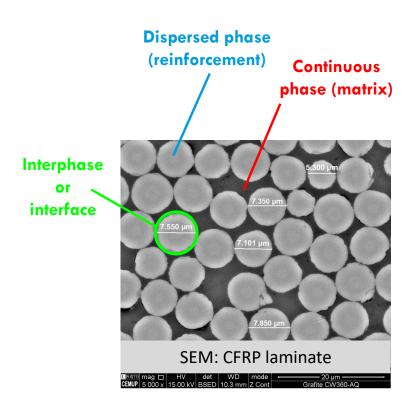
Real aging vs. accelerated aging

(Real ageing tests)


REAL CHICKEN LIFE CYCLE

(Artificial accelerated ageing tests)

ACCELERATED CHICKEN LIFE CYCLE


- 2 weeks at 48 °C?
- 1 week at 58 °C ?
- 1 day at 68 °C?
- 1 hour at 78 °C?
- 10 minutes at 100 °C!!!

Basic concepts: Parameters that influence the durability

The **durability and long-term behavior** of composite material, component or structure depends mostly on:

- Polymeric matrix: type of resin, additives and fillers
- Fibres: types of fibre(s), fibre content and layup, including surface veil
- Fibre-matrix interphase (or interface)
- Manufacturing process
- Production quality and resulting defects
- Structural details
- Installation/assemblage and quality control
- Special measures
- Maintenance

Source: CEN/TS 19101:2022 (E)

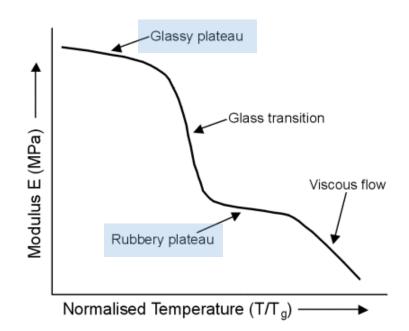
Basic concepts: Degradation factors vs. degradation mechanisms

■ <u>Degradation factors</u> are all <u>agents</u> that act on the material, component or structure and that may <u>cause alterations on its performance</u>. The main degradation factors can be classified according to two categories:

Environmental degradation factors	Mechanical degradation factors			
 Thermal effects 	Static loading: creep, relaxation			
Moisture	Dynamic loading: fatigue,			
Chemicals	vibrations, impact			
UV exposure				

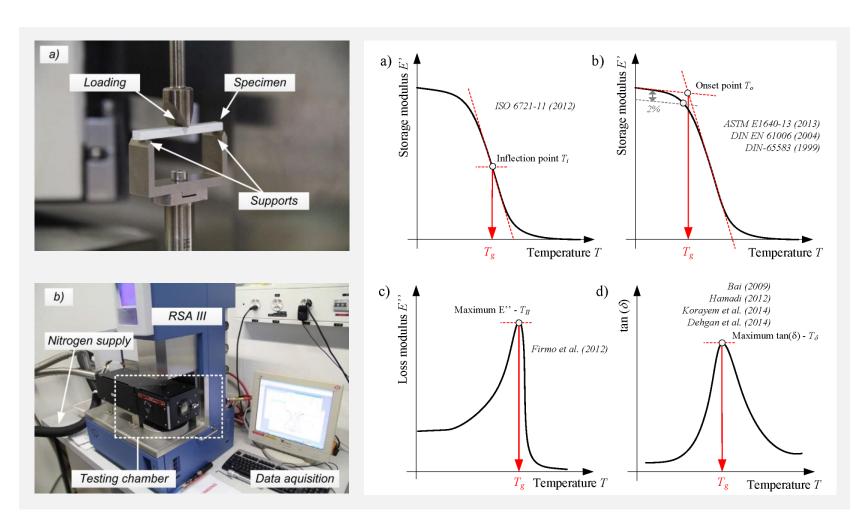
□ <u>Degradation mechanisms</u> are characterized by a sequence of <u>chemical</u>, <u>mechanical</u> and/or <u>physical changes</u>, leading to the <u>alteration</u> of one or more <u>mechanical</u> <u>properties</u> of the material, component or structure <u>in a harmful way</u> when exposed to a degradation factor or a combination of them.

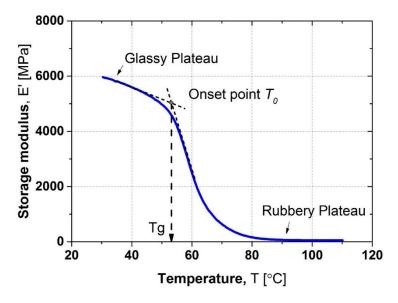
Thermal effects: Overview


- ☐ Normally, **thermal effects of composites** can be split in:
 - Service temperature conditions (below Tg* 20 °C)
 - Thermal cycles
 - Sub-0 °C temperatures
 - Freeze-thaw cycles

- ☐ In general, the **existing knowledge** on the thermal effects in FRP materials **is very limited**...
- ☐ Additionally, **test methods** adopted in the studies **vary significantly**, with respect to
 - the constituent materials (fibre and resin),
 - manufacturing processes,
 - type and exposure conditions and
 - characterisation techniques.

Thermal effects: What is glass transition temperature?


- Glass transition temperature (T_g) is the temperature range where the polymer substrate changes from a rigid glassy material to a soft likely rubber (not melted) material, and is usually measured in terms of the stiffness, or modulus.
- By cooling the adhesive from temperatures above T_g to temperatures below T_g result into a full recovery of its mechanical properties.


Techniques for assessing the T_g :

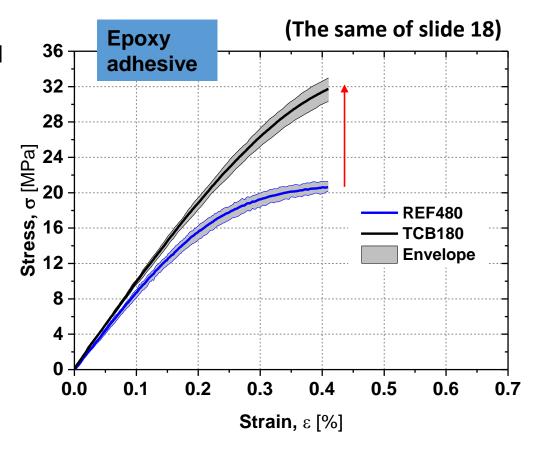
- Differential Scanning Calorimetry (DSC)
- Thermal Mechanical Analysis (TMA)
- Dynamic Mechanical Analysis (DMA)

Thermal effects: Dynamic Mechanic Analysis

Example of a DMA test of an epoxy adhesive

(*Michels et al. 2015*)

Thermal effects: Effects on the matrix


- **□** Glass transition temperature of resins:
 - Polyester resins → 70 °C to 95 °C
 - Vinylester resins → soften above 90 °C
 - Cold curing epoxy resins → 50 °C to 70 °C
 - Epoxy adhesive systems with high $T_g \rightarrow 230$ to 260 °C
- □ Sub-zero and extreme low temperatures can cause polymer matrix embrittlement, which increases its strength and stiffness → more brittle failure mode.
- Low temperatures can also cause matrix hardening and matrix micro-cracking.
- ☐ Freeze-thaw with the presence of salts and moisture can accelerate the degradation ratio, throughout the expansion of salt deposits and swelling.

Thermal effects: Effects on the matrix

■ Post-curing occurs when a polymer material is submitted to a temperature higher than the one at the first cure, thus increasing the <u>curing degree</u> (*). Normally, the postcuring phase increases the mechanical properties of the material.

□ Post-curing is observed when the temperatures in the polymer material temporally exceed the Tg. Tg also increases with post-curing.

(*) The curing degree describes the conversion rate achieved during crosslinking reactions (curing). In macromolecular chemistry, crosslinking refers to reactions in which a large number of individual molecules are linked to form a three-dimensional network. Linkage can be achieved either by direct setup of macromolecules or reaction to the already existing polymers.

Thermal effects: Effects on the interphase

- The coefficient of thermal expansion (CTE) are typically lower in the fibres than in matrix of FRP materials.
- □ Sub-zero and extremely low temperatures can cause embrittlement of the matrix and reduce the effectiveness of stress transfer between the matrix and the fibres.
- Freeze-thaw cycles might cause thermal stresses (due to differential CTE between fibre and matrix) and, along with the embrittlement of the matrix, can result in the matrix microcracking and on the development of residual stresses which could initiate the debonding of fibres from the polymer matrix.
- ☐ Elevated temperatures can result in thermal gradients and, together with increased viscoelasticity, would result in the degradation of the fibre-matrix interface.

Thermal effects: Effects on the fibres

- ☐ Fibres are typically immune to temperature effects!
- □ Nevertheless, the exposition of **GLASS** and **ARAMID** FRP to "<u>normal" service temperatures</u> (between -20 °C and 60 °C) lead to a **slight reduction** on the **elastic modulus**.

Thermal effects: Effects on FRP composite materials

- \Box Exposure to elevated temperatures led to reduction on the strength and stiffness when approaching T_g of the polymer matrix. For FRP composites in civil infrastructures T_g ranges:
 - General cases: 65 °C 120 °C
 - Pultruded composites: ≈140 °C.
- Elevated temperatures might result in the chemical decomposition of the matrix, degradation of the composing fibre (oxidation of carbon or softening/melting of glass fibres) and fibre-matrix interface damage due to incompatible thermal expansion.
- □ Post-curing of the polymer matrix may occur after thermal exposure with beneficial effects.
- □ Sub-zero temperature and freeze-thaw cycles can damage the FRP performance, namely by reducing its mechanical properties.

Thermal effects: Mitigation measures

- ☐ **To avoid** undesired FRP **degradation**, the following aspects should be considered:
 - Fibres should be completely and well covered by resin;
 - FRP should **not** have **cracks**, either on the surface or in throughout thickness;
 - FRP should not have voids;
 - The production process should guarantee good cure of the resin;
 - Good compatibility in terms of coefficient of thermal expansion (CTE) between matrix and fibres.

Moisture

■ Moisture includes direct contact to <u>rain</u>, <u>humidity</u>, <u>moisture</u>, <u>immersion</u> in aqueous solutions, among others...

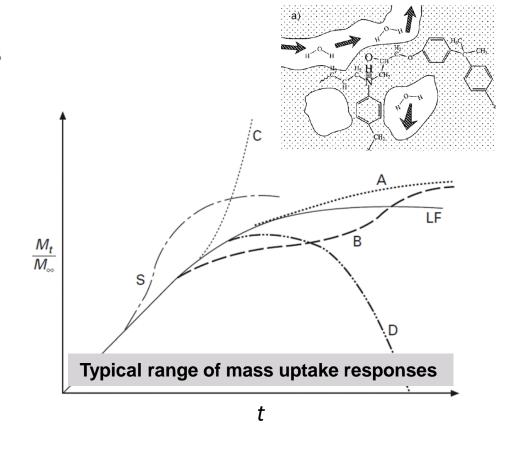
- ☐ Moisture causes changes in the physical, mechanical and chemical properties of composites.
- ☐ Physical ageing refers to reversible changes of physical material properties.
- ☐ Chemical degradation causes mostly irreversible changes in chain scission and may also affects the interfacial bond and effects at the fibre level.

Moisture: Main degradation mechanisms

Classification	Degradation Machanism	Location			Povorcibility
	Degradation Mechanism	Fibre	Matrix	Interface	Reversibility
Physical	Plasticization Swelling Relaxation		X X X	X	Yes (*) Yes (*) No
Chemical	Hydrolysis Chain Scission Pitting Debonding Leaching	X X	X	X X	No No (*) No (*) No (*) No

^(*) Sometimes is reported as both irreversible and reversible.

Moisture: Plasticization, swelling and relaxation

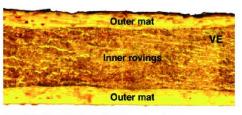

- Plasticization is the incorporation of low-molecular weight molecules into a polymer network that may act as a diluent or plasticizer. This physical mechanism occurs without increasing the specific volume, since incorporated molecules fill the empty voids between the polymer macromolecules.
- Swelling describes volumetric changes due to moisture content alone (independent of thermal expansion). The swelling volume increase in polymers is usually lower than the volume of water absorbed. This is due to the fact that when water is absorbed by a polymeric material, the comparatively small water molecules must either occupy the free volume as described above (plasticization) or cause these swelling effects.
- Polymer **relaxation** comprises the <u>redistribution of the voids and free volumes in the polymer network</u> due to swelling effects caused by penetrant molecules, forcing macro-molecular movement through relaxation, more moisture content can be absorbed in the polymer.

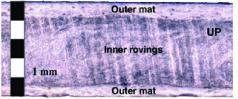
Moisture: Hydrolysis and leaching

- ☐ **Hydrolysis** typically occurs through the <u>hydrolytic molecular bond cleavage</u> due to exposure to moisture or water molecules, resulting in the <u>formation of water soluble fragments</u>.
- Leaching results i) from water acting as percolating fluid and promoting the extraction of low molecular weight degradation products from the polymer matrix or ii) due to the initial polymerization reaction and cure that may also leached out the low molecular weight segments, resulting in an apparent weight loss of the polymer. This effect is especially critical at elevated temperatures.

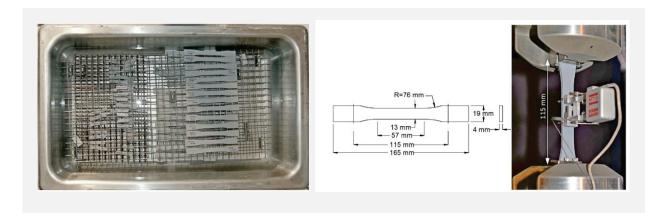
Moisture: Water uptake in FRP composite materials

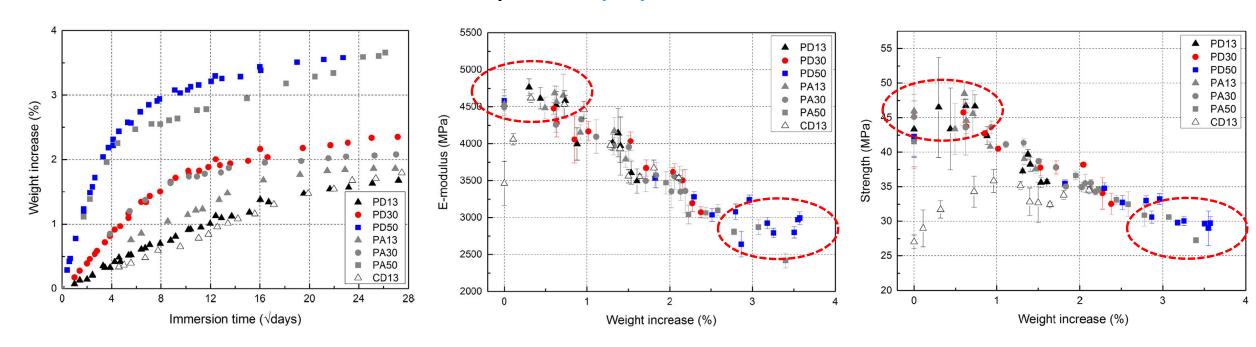
- □ The penetration of moisture into polymeric resins, FRP composites materials or adhesives occurs either by diffusion or capillarity, through an activated absorption/diffusion process:
 - Fickian by direct diffusion through the polymeric matrix;
 - Non-Fickian by diffusion through <u>existing voids or cracks in the matrix;</u>
 - Capillary by wicking along fibre-matrix interfaces.




- Several studies have shown that the saturation level depends on the immersion media, typically with higher saturation levels are achieved in:
 - distilled water >> fresh water
 - fresh water >> salt water

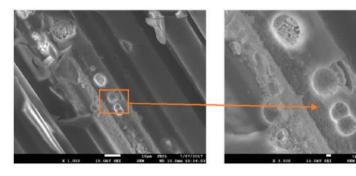
Moisture: Effects on resins


■ POLYMERIC RESINS are the most sensitive constituent of composites to moisture!



- VINYLESTER RESINS are usually less susceptible to <u>hydrolysis</u> when compared to unsaturated polyester resins (due to their terminal ester functional groups, which are shielded by methyl groups).
- □ At <u>early stages</u> water penetration in <u>THERMOSETTING POLYMERS</u> causes <u>physical ageing</u> takes place, mainly <u>plasticization</u>.
- □ For longer periods of water exposure, chemical ageing simultaneously occurs due to hydrolysis, involving the chemical attack on the ester linkages of the polymer (in polyester and vinylester resins).

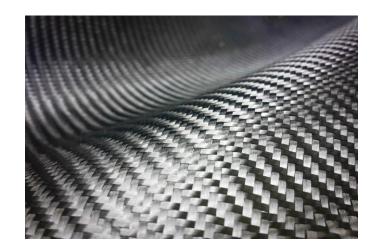
Moisture: Effects on resins

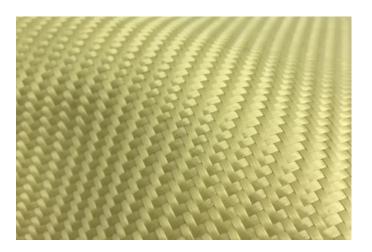

Example of an epoxy adhesive: Sikadur 330

Source:

• Savvilotidou, M.; Vassilopoulos, A.P.; Frigione, M.; Keller, T. (2017) "Development of physical and mechanical properties of a cold-curing structural adhesive in a wet bridge environment." Construction and Building Materials, 144: 115–124.

Moisture: Effects on the GLASS fibres

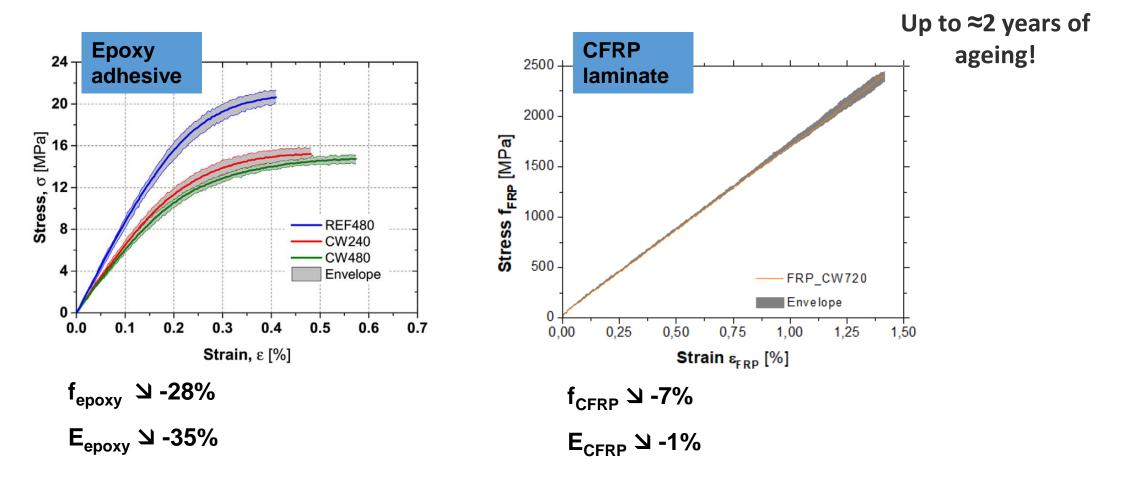



☐ Steps of degradation:

- 1. Moisture **extracting ions** from the fibres → Fiber structure is altered.
- 2. Creation localized **cavities** in a localized area **damaging the fibre surface** (due to the of the ions with water, which pit the fibre surface) → may result in **flaws that significantly degrade strength**, and can result in premature fracture and failure of the fibres.
- □ **Different approaches** have been proposed to **explain the stress corrosion** of glass fibres due to water:
 - Moisture adsorption results in a decrease in the surface energy of glass fibres, thus reducing the cohesive strength of the material;
 - The reduction of glass fibres strength due to moisture exposure is caused by the slow growth of cracks until a critical size is reached leading to failure;
 - Hydrolysis and ion exchange reactions occur in structural flaws, ultimately causing fibre failure.

Moisture: Effects on the Carbon/Aramid fibres

- □ CARBON FIBRES are relatively resistant to degradation in the presence of water.
- □ ARAMID FIBRES can absorb significant amount of moisture (up to 4.5% w/w); due to their aromatic amide structure, aramid fibres are prone to hydrolysis in their amorphous regions.

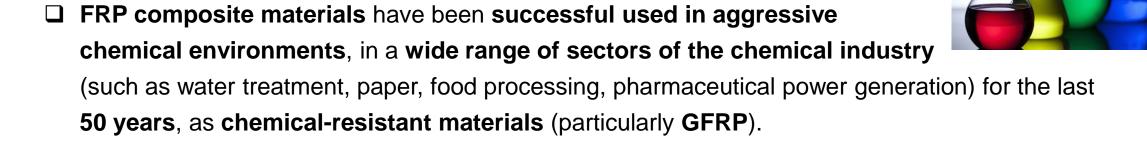


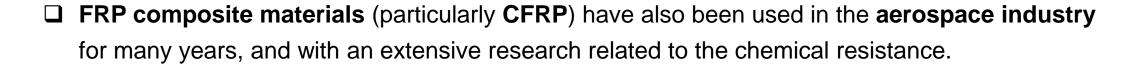
Moisture: Effects on FRP composite materials

- Mechanical properties of FRP materials can be significantly affected by the presence of moisture, as a result of the degradation of the matrix, the fibres and the interphase.
- □ Degradation of FRP materials is generally less sensitive when compared to that experienced by the corresponding neat resins due to the presence of the fibre reinforcement.
- □ Reductions in longitudinal and transverse tensile, compressive, shear and flexural properties due to moisture exposure are frequently reported in the literature.
- ☐ Effects of moisture-related degradation are **more significant** for **strength** than for **stiffness**, with changes in modulus generally being very small (typically in the order of 10% over a period of 10-15 years).
- □ Since the **polymer matrix is more sensitive to moisture** than the **reinforcing fibres**, **matrix dominated properties** are typically more **affected** than fibre dominated properties.

Moisture: Example of epoxy adhesive *vs.* CFRP laminate

Source:


- Silva, P.; Fernandes, P.; Sena-Cruz, J.; Xavier, J.; Castro, F.; Soares, D.; Carneiro, V. (2016) "Effects of different environmental conditions on the mechanical characteristics of a structural epoxy." Composites Part B: Engineering, 88: 55–63.
- Fernandes, P.; Silva, P.; Correia, L.; **Sena-Cruz, J.** (2015) "Durability of an epoxy adhesive and a CFRP laminate under different exposure conditions", SMAR2015 Third Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, September 7th 9th, Antalya, 8 pp.


Moisture: Mitigation measures

- ☐ The strategies **delay degradation** of FRP composite materials against **moisture** include:
 - i. Proper material selection and quality control during processing;
 - ii. Depending on the aggressiveness of the exposure, the **moisture ingress** into the FRP material can be delayed through the **use of protective coatings**, namely **gel coats** and **coatings**.

Chemicals: Overview

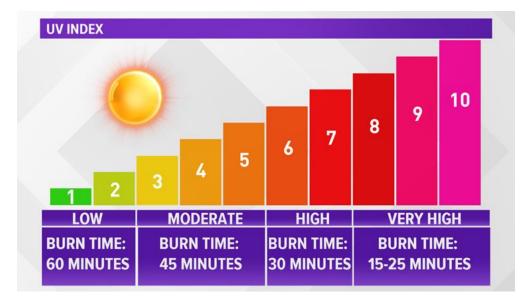
- ☐ However, as explained before, there are **critical differences** where these sectors are compared with **Civil Engineering** applications.
- □ Specifications of FRP composite materials for civil-engineering applications requiring chemical resistance still does not exist!

Chemicals: Effects on resins

■ POLYESTER RESINS in general have good acid resistance. Isophthalic resins have a better chemical resistance than orthophthalic resins. Unsaturated polyesters can be also formulated for high resistance to acids and weak alkalis.

- EPOXY RESINS are highly resistant to water solutions, organic solvents and alkaline environments, and they can be formulated for better resistance to several chemicals.
- VINYLESTER RESINS combine the properties of both unsaturated polyester and epoxy resins, providing an excellent resistance to water solutions, organic solvents and alkaline environments.

Chemicals: Effects on fibres


- GLASS FIBRES, by default, are damaged by alkaline environments and are susceptible to stress corrosion cracking. Due to that, glass fibres are chemical improved depending on the type of need:
 - C-glass: High chemical resistance glass fiber
 - AR-glass: Alkali resistance glass fiber
 - CR-glass: Acid corrosion resistance glass fiber
- ARAMID FIBRES are chemically stable under a wide variety of chemicals; however, certain strong acids and bases can cause degradation (particularly over long periods of exposure and at elevated temperature).
- CARBON FIBRES are by nature chemically inert to most environmental conditions. In general, they are not affected by solvents, bases and weak acids.

Chemicals: Effects on FRP composite materials

- ☐ Until now, there are no standard test methodologies for assessing the chemical resistance of FRP composites utilized in Civil Engineering.
- ☐ The **right choice** of the FRP composite materials should be done based on:
 - the particularities of the chemical environment;
 - the service temperatures;
 - the exposure profile;
 - the existence of synergistic effects.

UV exposure: Overview

- ☐ Outdoor FRP structures can be exposed to the ultraviolet (UV) radiation from the sun.
- UV radiation affects mainly the polymer matrix of FRP materials. This may yield to detrimental in the overall mechanical properties of FRP composite materials.

- Results show that the **effects** of exposure of **FRP composite materials** to **UV radiation** on are usually **confined to the top few microns of the surface**, affecting especially their aesthetical properties: **loss of gloss** and **discolouration**.
- ☐ However, when the **severity is high**, additional problems may occur:
 - stress concentrators and initiate fracture at much lower stress levels;
 - ingress of moisture.

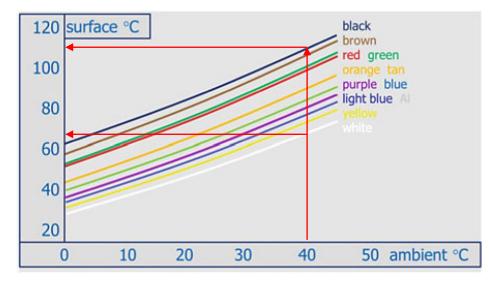
UV exposure: Effects of the matrix

- Most commercial polymers are susceptible to photodegradation caused by the UV component of solar radiation, because they have bond dissociation energies with wavelengths matching those of UV radiation (295 to 400 nm).
- □ Depending on the **type of polymer** and long periods of exposure other damage my occur, namely:
 - Crosslinking and rearrangement processes;
 - Surface crazing;
 - Branching;
 - Chain scission;
 - Cracking formation.

UV exposure: Effects of the on FRP composite materials

- □ **UV-induced degradation** in FRP composite materials typically occurs according to the following sequence:
 - Loss of surface gloss;
 - Surface discoloration;
 - Chalking;
 - Flaking of surface resin;
 - Pitting;
 - Microcracking;
 - Blistering;
 - Severe loss of resin from outer surface, fibres not yet visible;
 - Severe loss of resin from outer surface, fibres visible (blooming);
 - Fibres visible and loosened from the surface;
 - Delamination of topmost ply.

Loss of surface gloss and surface discoloration

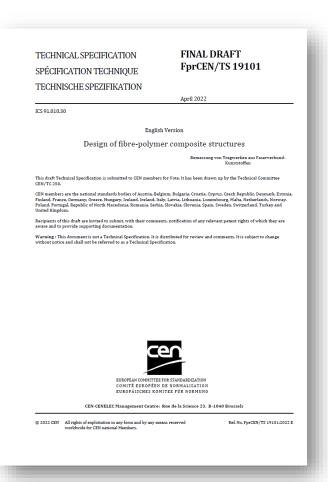


Fibre blooming

UV exposure: Mitigation measures

- ☐ The strategies **delay photodegradation** of FRP composite materials against **UV exposure** include:
 - i. Introduction of **stabilizers** into the polymer matrix:
 - Controlling the amount of radiation reaching the polymer
 - Inhibiting chemical reactions started by radiation absorption
 - ii. Application of **surface protections** of the FRP components, namely **gel coats** or **appropriate paints**.

The effect of direct sunlight on the surface temperature of different coloured objects


Source: P. Davies, Y.D.S. Rajapakse. Durability of Composites in a Marine Environment, Springer, 2014.

CEN/TS 19101:2022 - Design of fibre-polymer composite structures

■ Basis of design Materials LAMINATES

PROFILES

SANDWICH PANELS Durability ☐ Structural analysis Ultimate limit states ■ Serviceability limit states □ Fatigue Detailing Connections and joints ☐ Annex A (Informative) Creep coefficients Annex B (informative) Indicative values of material properties for preliminary design ☐ Annex C (normative) Buckling of orthotropic laminates and profiles ☐ Annex D (normative) Structural fire design ☐ Annex E (informative) Bridge details

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

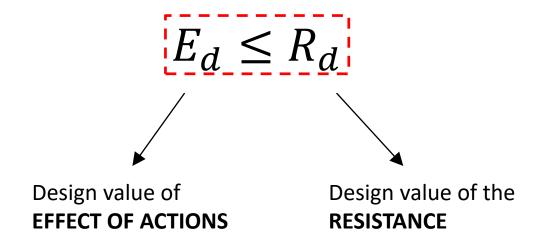
Bemessung von Tragwerken aus Faserverbund

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee

CRN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Demark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Lucuenbourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and Inited Kinedon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.


EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved

Ref. No. FprCEN/TS 19101:2022 E

• Ultimate limit states (ULS):

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbund-Kunststoffen

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Cech Republic Demmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Lucembourg, Matla, Netherlands, Norvay, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and Huited Kinedon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. FprCEN/TS 19101:2022 E

• Ultimate limit states (ULS):

Composite components, and members, bolted connections and joints

$$R_{\rm d} = \frac{1}{\gamma_{\rm Rd} \cdot \gamma_m} R\{\eta_{\rm c,i}\} X_{\rm k,i}; a_{\rm d}; \sum F_{\rm Ed}\}$$

Creep rupture, fatigue, adhesive connections, and fire

$$R_{\rm d} = R\left\{\eta_{\rm c,i}; \frac{X_{\rm k,i}}{\gamma_{\rm M}}; a_{\rm d}; \sum F_{\rm Ed}\right\}$$

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

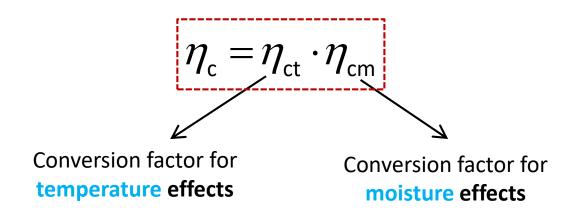
Bemessung von Tragwerken aus Faserverbund Kunststoffen

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee

CRN members are the national standards bodies of Austria Belgium, Bulgaria, Croatia, Cyprus, Crech Republic Demmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luzembourg, Maria, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kinzdon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.


EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved

Ref. No. FprCEN/TS 19101:2022 E

The changes in the mechanical properties of composite materials, sandwich core materials and adhesives, due to temperature and moisture effects through the conversion factor, η_c , given by:

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

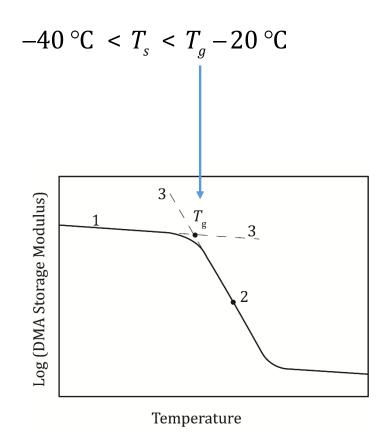
Bemessung von Tragwerken aus Faserverbund-Kunststoffen

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee

CRN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Caech Republic, Chemark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxemboung, Malia, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kinzdonia.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.


EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved

Ref. No. FprCEN/TS 19101:2022 E

The TS limits the maximum material temperature in service conditions, T_s , in members, joints and components:

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbund-

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee

CEM members are the national trandards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprux, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Fortugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved

Ref. No. FprCEN/TS 19101:2022 E

The **conversion factor for temperature**, $\eta_{\rm ct}$, is determined according to the following general equation, considering a **reference material temperature** of 20 °C:

$$\eta_{\rm ct} = \min \left\{ 1,0 - \alpha \cdot \frac{T_{\rm s} - 20 \, {\rm °C}}{T_{\rm g} - 20 \, {\rm °C}}; 1,0 \right\}$$

α	Composite materials, sandwich core materials and adhesives
0,25	For <u>fibre-dominated properties</u> of <u>composite materials</u> with glass, carbon or basalt fibres and thermoset polymer matrix of either unsaturated polyester, vinylester or epoxy
0,80	For <u>matrix-dominated properties</u> of <u>composite materials</u> with glass, carbon or basalt fibres and thermoset polymer matrix of either unsaturated polyester, vinylester or epoxy
0,46	For polymeric foam core materials, namely polyurethane (PUR), polyethylene terephthalate (PET) and polyvinyl chloride (PVC) foams (densities from 40 to 300 kg/m³)
0,85	For epoxy adhesives

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbund

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee

CRN members are the national standards bodies of Austria Belgium, Bulgaria, Croatia, Cyprus, Crech Republic Demmark, Estonia, Filanda, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Lucembourg, Malia, Netherlands, Norvay, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and Inited Kinedon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

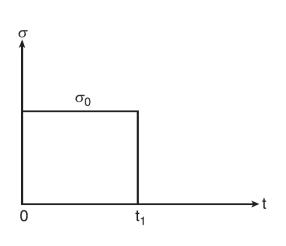
EUROPÄISCHES KOMITEE FÜR NORMUNG

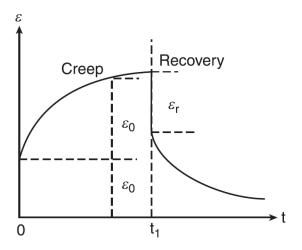
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

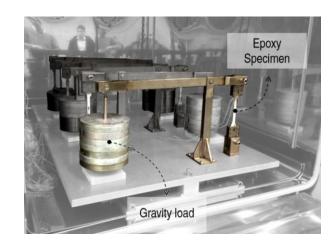
© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. FprCEN/TS 19101:2022 E

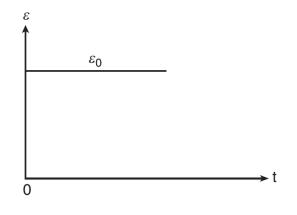
The **conversion factor for moisture**, η_{cm} , for for **unprotected composite materials** (glass, carbon or basalt fibres; thermoset polymer matrix of unsaturated polyester, vinylester or epoxy; fibre volume fraction of at least 35%) and **epoxy adhesives**:

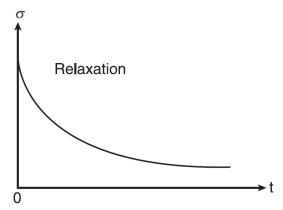

Exposure classes	Influence of moisture	$\eta_{\sf cm}$
I	Indoor exposure with service temperature	1,0
II	Outdoors exposure with service temperature, without (i) continuous exposure to water, (ii) permanent immersion in water, (iii) permanent exposure to a relative humidity higher than 80%, (iv) combined UV-radiation and frequent freeze-thaw cycles	0,85
III	Continuous exposure to water (or seawater), or permanent immersion in water (or seawater), or permanent exposure to a relative humidity higher than 80% (material temperature up to 25 °C)	0,60


What is Viscoelasticity?

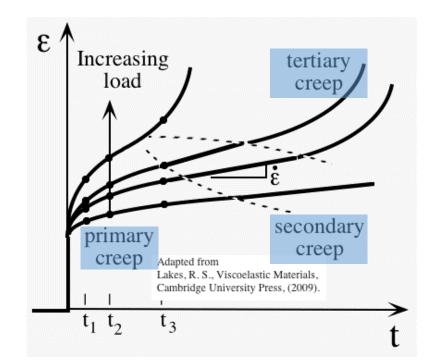

- ☐ **Viscoelasticity** is the property of materials that exhibit both **viscous** and **elastic** characteristics when undergoing deformation (during the time).
- □ A viscous material exhibits time dependent behavior: when a constant stress is applied it deforms at a constant rate. When the load is removed, the material has 'forgotten' its original configuration, remaining in the deformed state.
- □ An elastic material deforms instantaneously when stressed and 'remembers' its original configuration, returning instantaneously to its original state once the stress is removed.

What is Creep and Relaxation?


☐ Creep is a slow and continuous deformation of a material under constant stress.

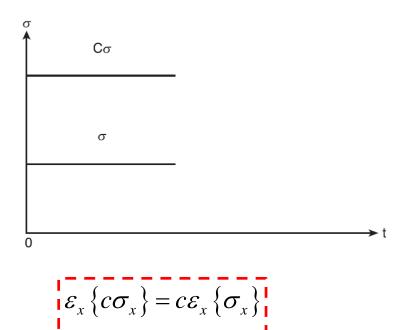


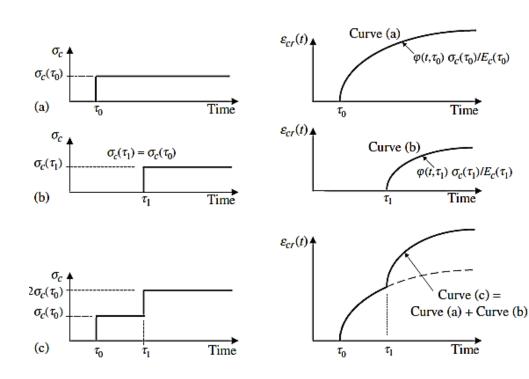
☐ Relaxation is a gradual and continuous stress decrease under constant strain.



Creep stages

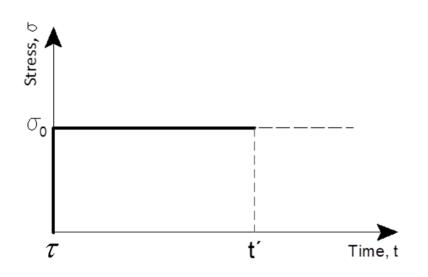
- ☐ Creep can be described in **three stages**:
 - Primary creep: the material undergoes deformation at a decreasing rate;
 - II. Secondary creep: the material progresses at a nearly constant rate;

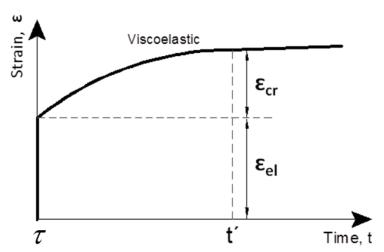

III. Tertiary creep: it occurs at an increasing rate and ends with fracture of the material.



Linearity in creep: Homogeneity + Superposition Principle

Homogeneity



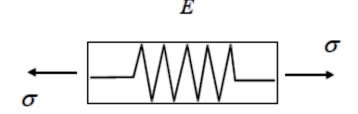

Superposition Principle

$$\varepsilon_{x}(\sigma_{x}^{1}+\sigma_{x}^{2})=\varepsilon_{x}\left\{\sigma_{x}^{1}\right\}+\varepsilon_{x}\left\{\sigma_{x}^{2}\right\}$$

Creep: Creep compliance (J) and Creep coefficient (φ)

$$\sigma(t) = \varepsilon_{\sigma} \cdot E(t)$$
 $\varepsilon(t) = \sigma_{0} \cdot J(t)$

$$\varphi(t,\tau) = \frac{\mathcal{E}_{cr}(t,\tau)}{\mathcal{E}_{e}(\tau)}$$

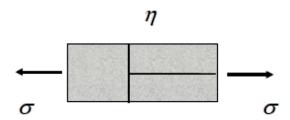

$$\varepsilon(t) = \varepsilon_e(t) + \varepsilon_{cr}(t)$$

$$J(t,\tau) = \frac{1}{E_c(\tau)} \cdot \left[1 + \varphi(t,\tau)\right]$$

$$\varepsilon_{e}(t) + \varepsilon_{cr}(t) = J(t,\tau) \cdot \sigma_{0} = \frac{\sigma_{0}}{E_{c}(\tau)} \cdot \left[1 + \varphi(t,\tau)\right]$$

Rheological Models: Basic components

Linear elastic spring

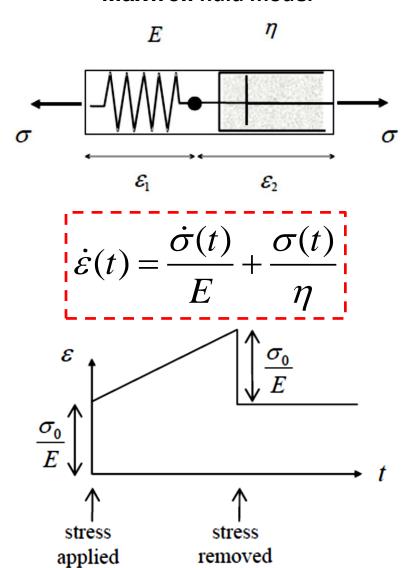


Hooke Model – typical of solids

$$\varepsilon = \frac{1}{E} \cdot \sigma$$

 ε – deformation, strain E – elastic modulus

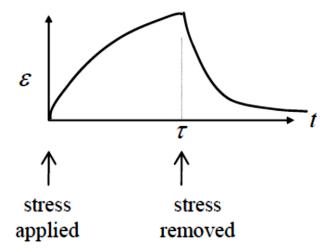
Linear viscous dash-pot


Newton Model – typical of flows

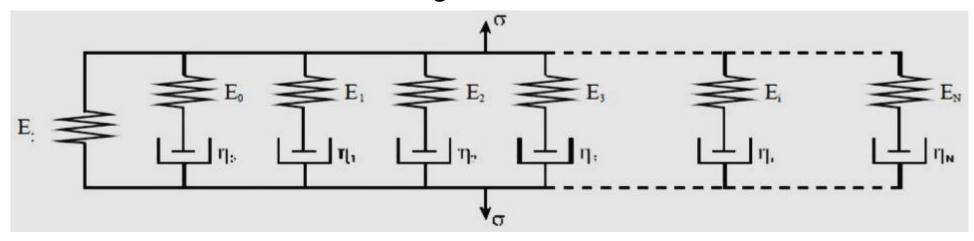
$$\dot{\varepsilon} = \frac{1}{\eta} \cdot \sigma$$

$$\sigma$$
 – stress applied η – viscosity

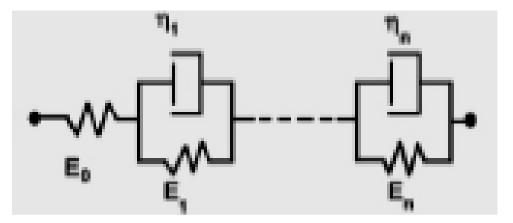
Rheological Models (1/2)


Maxwell fluid model

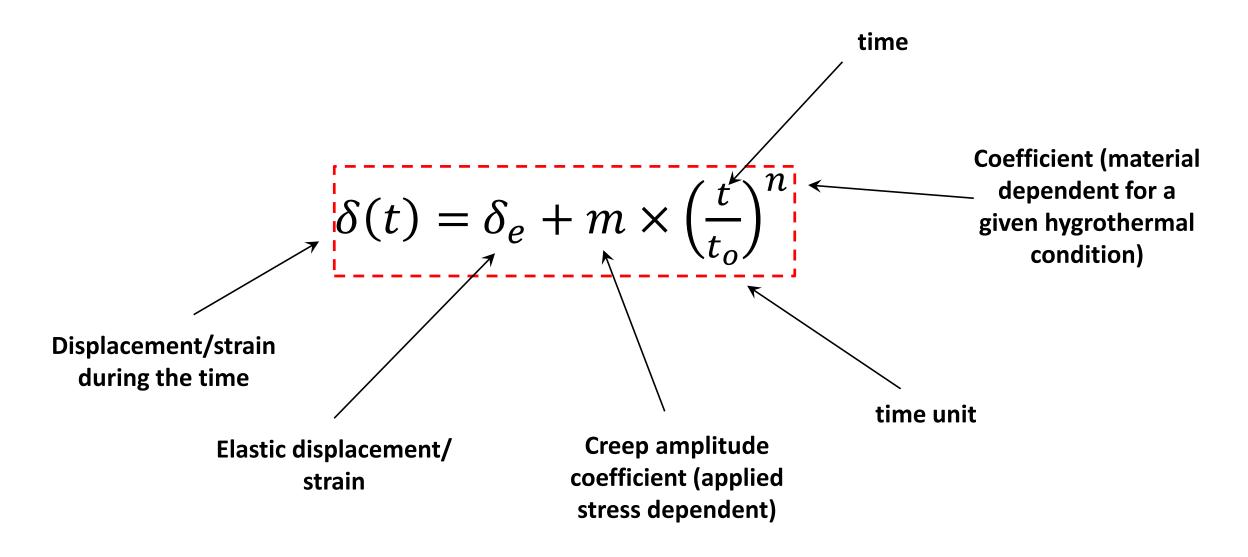
Kelvin (Voigt) solid model



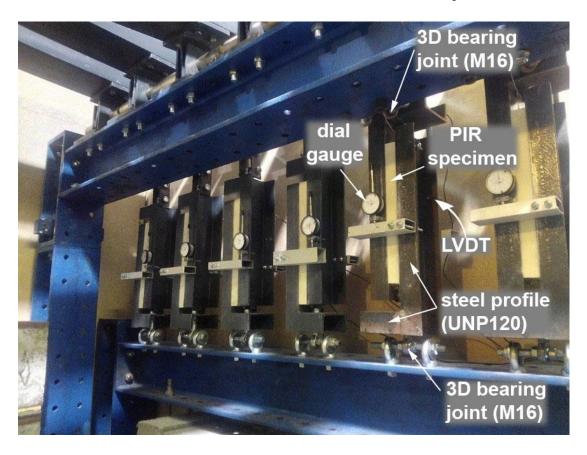
$$\dot{\mathcal{E}}(t) = \frac{\sigma(t)}{\eta} + \frac{E \cdot \mathcal{E}(t)}{\eta}$$

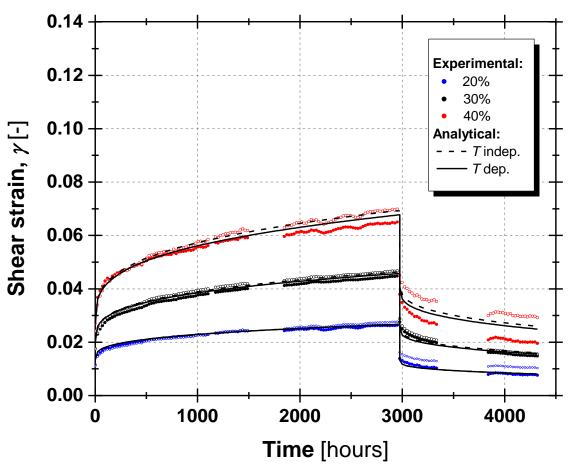


Rheological Models (2/2)


Maxwell generalized model

Kelvin generalized model




Creep Model for Composite Materials: Findley's power law

Creep Model for Composite Materials: Findley's power law

Creep of a PUR foam (40 kg/m³)

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbund Kunststoffen

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee CEN/TC 250.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Cacch Republic (Demark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Maria, Netherlands, Net-Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Klurdock.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussel:

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. FprCEN/TS 19101:2022 E

□ Serviceability verification (Linear creep)

Creep effects on the deformations of composite structures should be taken into account by reducing the initial mean values of the relevant elastic moduli of materials, through a creep coefficient:

$$X_m(t) = \frac{X_m(0)}{1 + \phi(t)}$$

t = time

 $X_m(t)$ = mean value of elastic or shear modulus at time to take into account creep effects

 $X_m(0)$ = initial mean value of elastic or shear modulus (at time '0')

 $\phi_m(t)$ = creep coefficient at time t

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbund Kunststoffen

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee CEN/TC 250.

CRN members are the national standards bodies of Austria Belgium, Bulgaria, Croatia, Cyprus, Crech Republic Demmark, Estonia, Filanda, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Lucembourg, Malia, Netherlands, Norvay, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and Inited Kinedon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. FprCEN/TS 19101:2022 E

□ Serviceability verification (Linear creep)

Table A.1 — Values for the creep coefficient, $\phi(t)$, for different elastic moduli of pultruded composite profiles (glass, carbon or basalt fibres; fibre volume fraction of at least 35%; temperature up to 25 °C; relative humidity up to 65%)

Property		Period of time (years)											
	1	5	10	15	20	25	30	40	50	75	100		
$E_{_{ m x}}^{ m full}$	0,25	0,38	0,46	0,51	0,55	0,58	0,61	0,66	0,70	0,78	0,84		
$G_{\mathrm{xy}}^{\mathrm{full}}$	0,57	0,98	1,23	1,40	1,54	1,66	1,76	1,94	2,09	2,39	2,62		
$E_{ m x,t}$	0,20	0,22	0,24	0,24	0,25	0,25	0,25	0,26	0,26	0,27	0,28		
$E_{ m x,c}$	0,20	0,23	0,27	0,30	0,32	0,34	0,36	0,38	0,41	0,45	0,48		

×3.7 ×2.8

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbund Kunststoffen

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee CEN /TC 250.

CRN members are the national standards bodies of Austria Belgium, Bulgaria, Croatia, Cyprus, Crech Republic Demmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luzembourg, Maria, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kinzdon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. FprCEN/TS 19101:2022 E

Serviceability verification (Linear creep)

Table A.2 — Values for the creep coefficient, $\phi(t)$, for different elastic moduli of composite laminates/plies (glass, carbon or basalt fibres; fibre volume fraction of at least 35%; temperature up to 25 °C; relative humidity up to 65%)

Type of fibres	Property	Period of time (years)										
Type of fibres		1	5	10	15	20	25	30	40	50	75	100
	$E_{\mathrm{x,t}}$	0,10	0,11	0,12	0,13	0,13	0,13	0,13	0,14	0,14	0,14	0,15
UD	$E_{ m x,c}$	0,15	0,23	0,27	0,30	0,32	0,34	0,36	0,38	0,41	0,45	0,48
	$G_{ m xy}$	1,13	1,55	1,78	1,94	2,06	2,16	2,25	2,40	2,52	2,78	2,94
Woven (0/90°)	$E_{ m x,t}$, $E_{ m x,c}$	0,44	0,53	0,58	0,60	0,62	0,64	0,65	0,67	0,68	0,71	0,73
CSM	$E_{ m x,t}$, $E_{ m x,c}$	1,48	1,91	2,12	2,25	2,34	2,42	2,48	2,58	2,67	2,82	2,93

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbund Kunststoffen

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee CEN /TC 250.

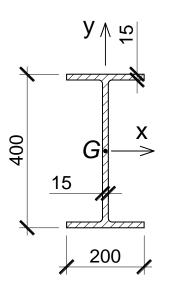
CRN members are the national standards bodies of Austria Belgium, Bulgaria, Croatia, Cyprus, Crech Republic Demmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luzembourg, Maria, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kinzdon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

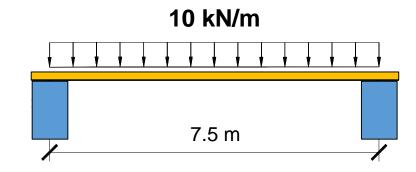
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels


© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

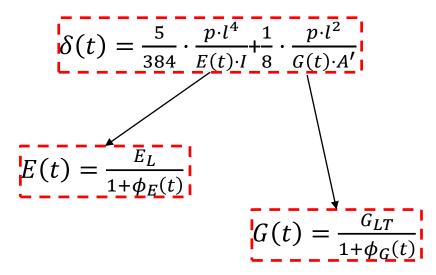
Ref. No. FprCEN/TS 19101:2022 E

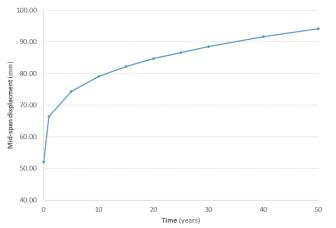
Serviceability verification (Linear creep)


Table A.3 — Values for the creep coefficient, $\phi(t)$, for the out-of-plane shear modulus, G_{xz} , of different core materials (temperature up to 22 °C for polymeric foams and up to 25 °C for balsa wood; relative humidity up to 65%)

Matarial	Duonouty	Period of time (years)										
Material	Property	1	5	10	15	20	25	30	40	50	75	100
PUR foam (up to 100 kg/m³)	$G_{_{ m xz}}$	3,34	4,19	4,60	4,86	5,05	5,20	5,33	5,54	5,70	6,01	6,24
PET foam (up to 100 kg/m³)	$G_{ m xz}$	0,03	0,21	0,31	0,38	0,44	0,49	0,53	0,60	0,65	0,77	0,86
End-grain balsa (up to 100 kg/m³)	$G_{ m xz}$	0,70	1,59	2,11	2,47	2,74	2,97	3,16	3,49	3,75	4,28	4,69

Pultruded GFRP I400 profile:


- $A_{web} = 60 \text{ cm}^2$
- $I_{xG} = 28576.625 \text{ cm}^4$
- $E_L = 30 \text{ GPa}$
- $G_{LT} = 3.5 \text{ GPa}$



Mid-span displacement (mm)

Time		Timo	shenko b	eam	
(years)	Flexural	Shear	Total	Flexural	Shear
0	48.06	4.02	52.07	92.3%	7.7%
1	60.07	6.31	66.38	90.5%	9.5%
5	66.32	7.96	74.27	89.3%	10.7%
10	70.16	8.96	79.12	88.7%	11.3%
25	75.93	10.69	86.62	87.7%	12.3%
50	81.70	12.42	94.11	86.8%	13.2%

(Based on Table A1. of FprCEN/TS 19101:2022)

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 19101

April 2022

ICS 91.010.30

English Version

Design of fibre-polymer composite structures

Bemessung von Tragwerken aus Faserverbun

This draft Technical Specification is submitted to CEN members for Vote. It has been drawn up by the Technical Committee CEN/TC 250.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Demark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Lucembourg, Matla, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and Initied Nitoridon.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION FUROPÉISCHES KOMITEE FÜR NORMING

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. FprCEN/TS 19101:2022 E

□ Ultimate verification (Creep rupture)

Creep rupture of composite members and components can be prevented by limiting sustained stresses (example for the case of tensile stresses):

$$\sigma_{\text{t,creep,Ed}} \leq \sigma_{\text{t,creep,Rd}} = \frac{\eta_{\text{c}}}{\gamma_{\text{M,creep}}} \cdot k_{\text{t,creep}} \cdot f_{\text{c,t,p}}$$

 η_c = conversion factor

 $\gamma_{\text{M.creep}}$ = partial factor for creep rupture

 $k_{\rm t,creep}$ = strength reduction factor for tensile creep rupture for continuous unidirectional fibres

= characteristic value of the tensile strength of the composite laminate in the fibre (i)

direction

 $f_{\rm i.t.k}$

Table 8.3 — Strength reduction factor for tensile creep rupture for continuous unidirectional fibres, k_{tcreep} , different types of fibres and a period of 50 years

Type of fibre	Glass	Aramid	Basalt	Carbon
$k_{\scriptscriptstyle exttt{t,creep}}$	0,4	0,5	0,6	0,9